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A number of well-known theorems on asymptotic stability and instability in 
the presence of one Liapunov function with a sign-constant derivative are 
generalized to non~tonom~s systems. Asymptotic stability and instability 
conditions are found for the equilibrium position of a holonomic mechanical 

system with variable masses under the action of potential, gyroscopic, and 
dissipative forces depending on time. 

1. We consider the system of differential equations 
Xi’ = xi (t7 xl7 227 . . -7 5,) 
Xi (t> 0, 0, . . -7 0) = 0 (i = 1, 2, . * ., n) (1, v 

who; 2T$ht$ndjsides are defined in the domain G {t > 0, I[ z I/ = (x12+ xsa-/-. . . 
I 

for ai 

are bounded in this domain, 11 x (t, X) II< Q = const 
(t, z) E 6 I and satisfy the Lipschitz condition 

li x (t,, 5@‘) - x (G, dl)) II < A, (I t2 - 4 1) + Jf-J, (II x2 - $1 10 f1.2) 

v t,, t, Ez IO, + a), 1 t, - t1 1 < T = const; x27 51 E 

r {II 2 II d HI 

For an arbitrary sequence of positive integers n, --f -t- 00 we set up a sequence 
of functions Xtp) (1;, x) = X ((n,. - 1) T + T, x), defined in domain G, (0 < 
‘G < T, II zII < H}. We have 

11 X(‘) (1;, 5) 11 <. Q, II Xtr) (‘62, 3%) - X(‘) @I, XI) II = (1.3) 

tl x ((& - i) T + z,, 4 - X ((n, - 1) T i- ‘61, 4 II< 
L, (If z; - r1 II) + J52 (II x2 - 3 II ) 

so that the sequence of functions XC’) (a, s> is u~for~y bounded and equicontinu- 
ous on G, . Consequently, according to Arzel& theorem [l], a subsequence nrs --t 

+ 00 exists such that Xtrdf (7, z) converges uniformly on G, to some function 
cp (‘c, 2). The continuity of cp (7, X) follows from the continuity of Xc’) (2, 5) 
and from (1.3) we get that cp (z, x) satisfies a Lipschitz condition in domain G, . 
Henceforth, p, (t, 5) is called the limit function of X (t, z) and the set of all limit 

functions is denoted N {Cp}. 
We consider the system 

. 
xi = rpt (h qc,, 57 . . .,2,) (i = 1, 2, . . .,n) (I.41 

for which, as follows from the remarks above, the conditions for the existence and 
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uniqueness of the solutions in G, are fulfilled. 

N o t e 1 . 1. By the construction of system (1.4) its solution is defined in the 
finite time interval [O, T], where the number T is specified by inequality (1.2),i. e., 
by the properties of the original system (1.1). 

Lemma 1. 1. For any solution 5 ;= 5 (t, to, x0), t > to, z (to, to, 

x0) = zo, of system (1.1) and for the bounded domain I? (11 z 11 < H} , for all t > 
to there exists a sequence of segments 
(n, - 1)T > to, 0 < t G_I T, 

39 (t) = z ((n, - w + t, to, xoL 
of this solution, converging uniformly to a function 

Z* (t) which is a solution of system (1.4) with a preassigned limit function cp = 
‘PO (6 J), cpo E N {cp). 

PI o o f. By the definition of ‘p. there exists n, --) + 00 such that X ((nr - 
1) T + t, Z) m= XC”) (1, Z) converges uniformly to ‘p. (t, 5) on G1 . We consider a 
sequence of segments of the solution 

I J (f, to, ZO) -- “@J(f) = 5 ((nr - 1) T -j- t, f 0, Jo), o,c t B T 

with number ~VO, (SO - 1) T >, LO. This sequence is uniformly bounded by virtue of 
the boundedness of the solution being examined and is equicontinuous by virtue of the 

baundedness of the derivative dx (t, to, xoj / dt. Consequently, from the sequence 
I(‘) (t> we can select a subsequence I(‘) (t) converging uniformly to some function 

Z* (t), 0 < t < T. We have 

w,-1) T+t 

z ((IL, -- 1) T 7~ 1, to, IO) = Lro ~/- 1’ 9 (z, I (z, t,, q,)) dr = 
*/ 
tr 

(7~,--1) T+t 

n I((/L,- i)T, l”,XO) 1 
! 

x(t,x(Z,t,,s,))d~-= 

Fs -1) T 

t 

.(*) (0) + 
s 

x ((n, - 1) 7’ t z, 5 ((us - 1) T -/m z, to, I”)) dr = 

0 

X(‘) (T, x@) (T)) - ‘p. (t, xc’) (T))] dz + 

0 
t 

s [cpo (f 3 Js) (0) - 90 ( r, x* @))I d-c i- 1’ ‘PO (~9 x* 6)) do 
0 0 

Passing in this equality to the limit as n, + + CO and taking into account the uni- 
form convergence of Xcs) (t, Z) to ~0 (t, x), as well as the uniform continuity of 
‘PO (t, z), we obtain 

t 
x* (t) = Z*O + 

s 
‘PO (z, CT* (t)) dz (0 < t < 2’) 

0 
The lemma has been proved. 

The introduction of system (1.4) and Lemma 1.1 enables us to establish the 
asymptotic stability and instability of the zero solution of system (1.1) in the presence 
of one Liapunov function with a sign-constant derivative. 
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Definition 1. 1. Theset kf {z : W (3) = 0) does not containin- 
tegral sohrti0n.S of System (1.4) if the latter’s solutions 5 = x (t, zc,), defined on the 
whole finite interval IO, Tj and such that 2 (t, z,,) E M for au 0,<t,<T, 
do not exist. 

2. Theorem 2. 1. Let system (1.1) be such that: 
1) a positive-definite function I’ (t, z), VI (11 z 11) < V (t, z)< V, (11 5 II), 

admitting of an infinitesimal upper bound, exists in domain G , whose total derivat- 
ive relative to (1.1) is v’ (t, z) < W (5) < 0; 

2) a limit function cpo E N {cp} exists such that the set M {X : W (5) = 0) 
does not contain integral solutions of system (1.4) corresponding to this function be&d- 
es thesolution CC (t, 0) = 0, 0 < t < T. 

Then the zero solution of (1.1) is asymptotically stable uniformly with respect to 
initial coordinates from the domain 

To {II 5 II < Ho, Ho -c HI < H, v, (Ho) < VI (HI)) 

P r o o f. From the theorem’s hypothesis 1) follows the stability of z = 0 
UnifOImly with respect to to [a]. Indeed, for the solution r = 5 (t, to, a$), to 
> 0, x0 E ro, of (1. l), by virtue of v’ < 0 we have 

II z (t, to, x0:0) II < HI, Vt > to 
lim t_++m v (t, z (t, to, X0)) = v* = const > 0 

Let US assume that V* + 0 for some such solution. We select q, 0 < q < V,-’ 
(V*). Then for this solution 

II 5 (t, to, x0) II > 77 vt >, to (2.1) 

Let 90 (t, Z) be a function satisfying the theorem’s hypothesis 2). By Lemma 1.1 
we construct a sequence of segments z(‘) (t) = zc ((n, - 1)T + t, to, ~0) converg- 

ing to the solution 5 = z* (t), 0 < t < T of system (1.4) with function cp = ‘PO 

(t, 2). By virtue of (2. l), x* (t) # 0 for all 0 < t < T. For the sequence 

x(f) (t) we have the estimates 

V (Q, z(n,T, to, ~0)) - V ((n, - 1) T, z ((n, - 1) T, to, ~0)) = (2.2) 

V n7 

J V’dt< - s w(II:(t, to, xo))dt<- ~w(dyt))dt<O 
(n,.--l)T W-W' 0 

Letting n,. + -I- cc, we obtain 

T 

o=v*_ v* = - s W (x* (t)) dt < 0 
0 

Hence it follows that W (x* (t)) = 0 f or au 0 < t < T, which contradicts the 

theorem’s hypothesis 2). Thus, V * = 0. Consequently, from the positive-definite- 

ness of V (t, x) follows the fulfilment of the relation limt++- X (t, to, GJ) = 0 
for all to > 0 and x0 E rs. From the to -uniform stability and compactness 

of r. it follows [2] that the property mentioned is fulfilled uniformly with respect 
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to x0 E: r-0. This follows as well from the conditions V” = 0 [S]. 

Theorem 2. 2. Let system (1.1) be such that: 
1) a function V (t, I), 1 V (t, z) ( < V, (11 z II), admitting of an infinitesimal 

upper bound and having positive values in any small neighborhood of z = 0 , exists 
in domain G , whose total derivative relative to (1.1) is V’ (t, x) > W (x) > 0; 

2) a limit function ‘p = ~0 (t. 5) E iV {cp} exists such that the set M {X : W 
(x) = O} does not contain integral solutions of system (1.4) corresponding to this 
functions besides the solution IL: =- z (t, 0)) 0 +. t < T. 
Then the zero solution is unstable. 

Proof. For to),0 andforanysmall 6>0 wechoose z~,,IIz,,II<S, 
such that V (to, 5a) = V. > 0. We assume that the solution 5 = X( t, to, ZCJ 
is bounded: )I 5 (t, lo, zo ) 1) < HI < H for all t > to. Then limt4+oo V (t, z 
(t, to, 320)) = v* exists by virtue of the boundedness of V . From V* > 0 
we have 

II (x (4 to, zoo) II > rl, Vt > to (2.3) 

where q is such that V, (q) < T/o. Let cp == ‘p. (t, z) be a function satisfying 
the theorem’s hypothesis 2). By Lemma 1.1. we can construct a sequence of segments 
z(‘) (t) of the solution being examined, converging to the solution z = Z* (t), 0 < 
t < T , of system (1.4) with function cp = ‘pa (t, z). By virtue of (2.3), X* (t) 

# 0 for all 0 < t < T. Analogously to (2.2) we have the relations 

V (npT, s(nrT, to, x0)) - I/ ((n, - 1) T, z:((.n, - 1) T, to, ~0)) > 
T 

1 w (xw (L)) dt > 0 
a 

Letting n, --+ _t 00, we obtain the equality 

0 =1/*---I/* = iw(X*(t))dl>O 
0 

or W (z* (t)) = 0, which contradicts the theorem’s hypothesis 2). 

(2.4) 

N o t e 2 . 1. In the hypotheses of the theorems with sign-constant derivative 
in [4,5] we can indicate a finite number _T > 0, such that the set M{z : V’(s) = 0) 
does not contain the solutions 

on the whole interval [O, I’]. Hence, taking into account that system (1.4) coincid- 
es with (1.1) when the latter is autonomous and that the number T in Theorems 2.1 

and 2.2 can be arbitrary, we can show that the methods used to prove Theorems 2.1 

and 2.2 are applicable to the proofs of the theorems in [4,5]. 
Starting from this note, we can say that Theorems 2.1 and 2.2 are generaliza- 

tions of the asymptotic stability and instability theorems with sign-constant derivative 

in [4,5]. 
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N o t e 2 . 2. The example in [6], showing the impossibility of a direct general- 
ization of the theorems in [4,5], does not satisfy the hypotheses of Theorem 2.1. 

E x a m p 1 e 2 . 1. Let us consider the second-order system of differential equa- 
tiOIlS 

=1 * = &zf~h + &a (+%t X8' = - a"lS (4 % + gas (4 2, (2.5) 

We assume that the coefficients gij (t) are bounded and satisfy the Lipschitz condition 

I gi j (kd - gi j (tl) [ < &(I ta - tl I), gl, (t) + 0 on an infinite system of intervals [trp, 

t,k]r tsk - tlk > T > 0, tlk - + O” = nk + + 00, T = const. Then with system 

(2.5) we can associate the system 

51’ = g11* (t) 31 + g*** (t) 22, 2,’ = - g1** (t) $1 i- &I* (t) 51 (2.61 

whose coefficients gij* (4 are the limits of and gls* (t) # 0 for all 0 < 
t< T. 

gi j tt) s 

For the derivative of the function V = zla + z,* relative to (2.5) we have 
V’ < - hr12 if g,r(l) < - h - const < 6 and gza (t) < 0 (case 1) or V’ > hIa 

if gIl (t) >, h = const > 0 and gs, (1) > 0 (case 2). But by virtue of the condi- 
tion gll* (8) # 0 the set Al {W (sf = f hz 12 = 0 : zI = 0) does not contain solutions 
of system (2.6) besides x1 = q = 0. Consequently, from Theorems 2.1 and 2.2 
we get that the zero solution of (2.5) is asymptotically stable in case 1) and unstable 
in case 2), which are weaker than the conditions required in the well-known example 
of Chetaev [7]. 

3, Let us consider the question of the asymptotic stability and instability of the 
zero solution of (1.1) with respect to a part of the variables zl, xs, . . . , cc,,, (m < 
n). For this we denote 

Yi = 5t (i = 1,2,. * *, m), zj = 5,+j (j = 1,2, . . .( p, 

=n-mm) 

iY II = (Y12 + Y2 + * * * + Y~a)‘/~, f/ 2 Ii = ($ + 222 -j- . ‘ . +zP”)“” 

Theorem 3. 1. Let system (1.1) be such that: 

1) ita solution 2 = z (t, to, &I), to > 0, 11 zo II < H,, is uniformly L-bounded 

in z, i,e., for these solutions 11 z (t, lo, ~,,:o) 11 < L for all t > to for which 

II Y @l to, %of II < -4, Aa + L2 < Jfxz, H, < HI < H; 
2) a y -positive-definite function V (t, x), V (t, z) > VI (11 y /I), exists in 

domain G, such that V (t, z) < V, (z) and v’ (t, r) < -_W (2); V, (z), 
and liv (x) are some sign-constant functions; 

3) a limit function a, = q. (t, 5) e N {cp} exists such that the set n/r {Z : 

W (4 = O} 17 li: {z : V, (ix) > O> d oes not contain integral solutions of system (1.4) 

corresponding to this function. 
Then the zero solution of (1.1) is Y -asymptotica~y stable uniformly with respect 

to x0 from the domain I’s {II J: I\ < Iis < Ha, sup (Va (2) for z e I’,) < V, 

(A)). 
P r o o f. From the theorem’s hypotheses 1) and 2) follows the y -stability of 

the zero solution of (1, l)* uniform with respect to to [8]. For any solution 
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x = x (t, to, 10). ts > 0, x0 E ro, by virtue of V’ < 0 we have I( Y (t, to, 
rJ II < A for all t > to and limt,+, V (t, x (t, to, x0)) = V* > 0. 
Thus the solution of (1.1) from To is bounded by the domain rr {II k II < A, 
II 211 < LI. 

Let us assume that V* # 0 for some solution x = x (t, to, x0), x0 E ros 
Then for all t > to we have T/’ (t, x (t, to, x0)) > V*, and, hence, V, (Z (t, to, 
x0)) > V* > 0. Consequently, 

x (t, to, x0) E or {X E rl : v, (4 > v*j, v t > to (3.1) 

Let ‘PO (t, X) be a function satisfying the theorem’s hypothesis 3). By Lemma 1.1 
we construct a sequence of segments &‘y = x ((n, - 1) T -I- 4 to, xo) con- 

verging to the solutions x = x* (t), 0 < t < T of system (I. 4) with function 

rp = cpo (G x1* By virtue of (3.1) we have x* (t) E K, for all 0 < t < T. 
AS in Theorem 2.1, from estimates (2.2) we obtain the relation w (x* (t)) = 0 

for all 0 < t < T, which contradicts the theorem’s hypothesis 3). 
Thus, for any solution x = x (t, to, x0), to > 0, x0 E. ro we have V* = 0 

and, consequently, limb+, y (4 to? x0) = 0. According to [3], from the rela- 
tion limt_+, V (t, x (t, to, X0)) = 0 it follows as well that the asymptotic y - 

stability found is uniform with respect to x0 E To. 

The nature of the instability of the zero solution of (1.1) can be established by 
the following @eorem. 

T h e o r e m 3 . 2. Let system (1.1) be such that: 
1) its solutions 2 = 5 (t, to, x0), to > 0, I! x0 I! < Ho , is uniformly L - 

bcunded in z, i. e., for these solutions ]I 2 (t, to, x0) 11 < L for all t > to 

such that 11 y (t, to, x0) II < A, Ho2 < A2 i- L2 = Hla < Hz; 
2) a bounded function V (t, x), I V (t, x) 1 < V, (I] x II), exists in domain 

G , taking positive values in any small neighborhood of x = 0 whose total 

derivative relative to (1.1) is V’ (t, z) > W (x) > 0; 
3) a limit function cp = ‘p. (t, x) ES N{cp} exists such that the set M {x : 

W (x) = 0) n K {x : V, (x) > 0} d oes not contain integral solutions of system 

(1.4) corresponding to this function. 

Then the zero solution of (1.1) is y-unstable. 

Proof. For to),0 andanysmall S>O wechoose zo,11zo~)1<6, 
such that V (to, x0) = V, > 0. We assume that the solution x = x (t, to, x0) 
is bounded in y , i.e., 

II y (4 to? q) II < A, A2 + La = HI29 vt > to 

Then by virtue of hypothesis 2), lim++, V (t, x (t, to, x0)) = V* exists and 

also 

V, (x, (t, to, x0)) > vo > 0, v’t > to (3.2) 

By Lemma 1.1 we construct a sequence of segments of the solution being examined, 
converging to the solution x = X* (t), 0 < t \< T, of system (1.4) with function 

cp = 90 (t, x). By virtue of (3.2), ys (x* (t)) > V, > 0; from a relation of 

form (2.4), as in Theorem 2.2, W (xc* (t)) z 0 for all 0 < t < T. This 
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contradicts the theorem’s hypo~es~ 3). 
Making a note analogous to Note 2.1, we can assert that Theorems 3.1 and 3.2 

generalize to system (1.1) the results in [3,9, lo] on asymptotic stability and instabil- 
ity with respect to a part of the variables with a sign-constant derivative, 

4. Let us consider a mechanical system with variable masses and with time-inde- 
pendent holoiiomic constraints, whose motion is described by the equations [llJ 

d* aT 

i 1 d*T 
- 7 --=- dt aq, &?i a% + *i + 2 gi.Sj - 2 fijQj’ 

j=l j=l 

T=+t %j(tt m, Q)%‘Qj‘ 

i ,j=l 

(4.1) 

Here T is the kinetic energy, aen I dq, are generalized forces, viz., potential 
forces for the masses fastened, gij (t, qr, qs, . . ., qn) = -gji (t, ql, Q2, . . 
. ,&) are the coefficients of the gyroscopic forces, fi j (t, q) = fji (t, q) are 

the coefficients of the dissipative forces $i (t, q, q’) are the generalized reactive 

forces caused by the joining and separating of particles to and from the system’s mater- 
ial points and by the motion within these points, d* / dt and a* / r?qi are deriva- 

tives under hardening masses. It is assumed that the masses of the points are bounded 
and do not vanish, i. e., 

0 < ml < mz (4 d < m2, mhl, mz = const (4.2) 

(A = 1, 2, * . ‘, iv) 

in addition d*E / i3ql = . . . = d*II / dq, = 0 for ql=qo. =... = 
qn = 0 for all t ;;Z 0 and for any values of ml, . . ., mN satisfying inequalit- 

ies(4.2); I!I~=$~=...=$~ =0 for ql’ =I q2’ = . . . = qn’ = 0, 

for all t > 0 and q; all the quantities occurring in Eqs. (4.1) satisfy conditions 

(1.2). 
Then system (4.1) admits of the zero solution 

q; = q2’ = . . . = qn’ = 0, q1 = q2 = * . . = qn = 0 
(4.3) 

and with it we can associate the system of differential equations (Lemma 1.1) 

N n 

c aijoqj” + c 0 * * 1 n 
%jkQj qti - 2 c U~kiqj*qk- = (4.4) 

j=1 j, k=i j, k=l 
n 

n,"+ 
c 

gi?Qj’ - fij”q.i’ + 4% 

j=l 

ill Which Gij', &jkot IIi’f gij5, fij”, zlli” are the limits of the corresponding quantit- 

ies from (4.1). By virtue of (4.2), det 11 eij’ fl > o = con& > 0. 

using the theorems proved, we find the conditions for the asymptotic stability and 

instability of solution (4.3) of system (4.1). Let us assume that system (4. I.) satisfies 
the following constraints: the joining and separating of the particles and their motion 
within the material points are such that 
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N N 

c R,v, + f ~~-v,~ < 0 (4.5) 
p=1 p-1 

where R, is a reactive force applied to the p -th material point (in the absence of 
internal motion of the particles [ll] this condition reduces to 

N 

1 VP<0 

where 6,. and up are the figurative and the absolute velocities of the particles 
joining to and separating from the system’s material points); the function n (t, m, q) 
does not increase with increase in time and with the change in the masses of the 
system’s points under this increase, i. e., 

(4.6) 

the dissipative forces acting on the system are forces of total dissipation, and f is a 

positive-definite quadratic form in ql’, qa’, . . . , qn’,i. e., 

fo = 0 $=+ ql’ = q2’ = . . . = qn’ = 0 

(4.7) 

Theorem 4. 1. Together with conditions (4.5) - (4.7) we assume as well 
that: 

1) function n (t, m, q) is positive-definite and admits of an infinitesimal 

upper bound with respect to ql, q2, . . *P ni q 

2) (4.3) is a nondegenerate isolated equilibrium position, i. e., the condition 

~(~)2>i10(41, qz,.. .,q,)>(), II,=o~q,=q, = . ..= q,,=O (4.8) 

i=l 

is fulfilled. 

Then the zero equilibrium position of (4.1) is asymptotically stable uniformly with 

respect to (qo’, qo)- 

P r o o f. From the theorem’s hypotheses the function H = T + n is positive- 
definite and admits of an infinitesimal upper bound with respect to q1’,q2’, . . ., qne, 

q1, qz, . - *s Qn , with total derivative 

H’ < - 2f < -2fo < 0 

where f. = 0 if and only if ql’ = q2’ = . . . = qn’ = 0. For system (4.4) 
we find that its solution lying on the set ql’ = qz’ = . . . = ;I,,’ = 0 must satisfy 

the equalities III0 = 112” = . . . = 11,” = 0 , which, by virtue of (4.8), is 

possible only for the solution ql’ = 4%’ = . . . = qn’ = q1 = . . . = qn = 0. 
Hence from Theorem 2.1 it follows that solution (4.3) is asymptotically stable 
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uniformly with respect to (Qs’, go). 

T h e o r e m 4 l 2. Together with conditions (4.5) - (4.7) we assume as well 
that function II = Ii (t, m, q) is positive-definite in ql, * - -3qm and is bound- 
ed by a continuous function P,, (ql, qer . . .,qn), II (t, m, q) < PO (4); the 
motions (4.1) from some neig~o~~d of (4.3) are u~formly bounded with respect 
to Qmtic * * -sqn; 

-‘*,qnl >O* 

there are no equilibrium positions of (4.1) on the set PO (al, qz, 

and this property is nondegenerate, i. e. , 

(4.9) 

when: no h qzv - - ., Qn) > 0 on set PQ fql, qz, . . . qn) > 0. Then the 
zero eqU~~r~m position of system (4.1) is ~ympto~ca~y stable with respect to 

q1.r II%‘, - * -&n', Ql, - * .,qm uniformly with respect to (qo’, qo). 

P r 0 0 f. From the theorem’s hypotheses the function J$ = 2’ + II is positive- * * * 
definitein 91, c&,. . .,qnt e, , . ., qm, H < To + PO, To is a positive- 
deffuite quadratic form in ql‘, qz’, . a ., . . We also have 

H’,<-- a, M @it 9 : ft, = 0) ;K (q’, q : To + P, > 0) =I 

{q’, q : P, (41, qa, . . ., qn) > 0, 41’ = q2‘ = * * - = Qn’ = 01 

By virtue of (4. S), 

on set PO kh, q2, l . ., qn) > 0 . Consequently, set M n R does not contain 
SOhrtiOnS Of System (4.4). Hence, on the basis of Theorem 3.1, we obtain the proof 
required. 

T h e o r e m 4 _ 3, Together with conditions (4.5) - (4.7) we assume as well 
that n - fI ft, m, ir) admits of an ~~~t~irnal upper bound with respect to or, 
429 * - ** 4n; in any sufficiently small neighborhood of (4.3) the function n takes 
negative values; equilibrium position (4.3) is nondegeuerate and isolated, i. e. , rela- 
tion (4.8) holds. Then this equilibrium position is unstable. 

Ex a m p 1 e 4 . 1. We consider a heavy rigid body of variable composition, 
rotating around a fixed point 0 , whose center of mass can be displaced along the 
axis OX of some coordinate system Oxyz fixed in the body; the moments of the 
reactive forces, of the inertial forces and of the Coriolis forces of the moving particles 
equal zero. The position is defined by the Euler angles 8, cp, 9, formed by OX?/2 

with a fixed system O$& axis 05 is directed vertically upward; I = I (t, 8, cp, 4) 
is the body’s inertia tensor in the axes Oxyz , dl / dt is a non-positive matrix. Besides 
the force of gravity with potential function ff, = mgx,, sin 6, sin cp let the following 
forces act on the body: dissipative forces with total dissipation and potential forces 
with potential function 
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so that the equations of motion admit of the equilibrium position (the body’s axis oz 
is directed downward) 

n, = n, (t, 8, cp, $1, an, 1 at < 0 
anl - anl - anl -0 when e=G, cp=$, __-- 
ae acp a* 

l#=o 

If II, is positive-definite, admits of an infinitesimal upper bound with respect to 
6 - n / 2, cp - 3n / 2, $ and 

(.!gy+ (y$+ (.gq’>nloce,ww 

n,=o*e=+, (p=-F, Ip=o 

mg z. >, q = const > 0, (nzg~)’ < 0 (4.11) 

then equilibrium position (4.10) is asymptotically stable uniformly with respect to 

90., (PO’, qo’, 9,, (po, *o. If n, = const , then under conditions (4.11) position 
(4.10) is asymptotically stable with respect to W, cp’, $., 9, cp. When II, = const 

there also is the equilibrium position (the body’s axis OX is directed upward) 

6. = cp* =**=o,e=$,‘p=3+, *=o 

Under the action of dissipative forces with total dissipation and under the conditions 

0 < q1 < (mgs0) < q2 thy q2 = co-t) and (mgzo)' > 0 this equilibrium position 

is unstable. 
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