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A number of well-known theorems on asymptotic stability and instability in
the presence of one Liapunov function with a sign-constant derivative are
generalized to nonautonomous systems., Asymptotic stability and instability
conditions are found for the equilibrium position of a holonomic mechanical
systern with variable masses under the action of potential, gyroscopic, and
dissipative forces depending on time.

1. We consider the system of differential equations
' = X; (¢t xy, X9y . .., Xp)
X; (4, 0,0,...,00=0 (i=1,2,...,n)

whose right hand sides are defined in the domain G {t > 0, || z || = (2,2-+ z,2+...
z,%)'/* < H}, are bounded in this domain, || X (¢, 2)|| << ¢ = const
for all (¢, x) € G , and satisfy the Lipschitz condition

X (t, %) — X (1, PN Li(lta— 6 )+ Ly (lze — 2 ) (1.2
Vi, 10, +o0), |t,—1 |<<T =const; 2, E
izl < H}
For an arbitrary sequence of positive integers n, — -f- co we set up a sequence
of functions X" (1, ) = X ((n, — 1) T + 7, z), defined in domain G, {0 <
t<< T, |z|| X H}). Wehave

X (z, | <@ | XD (15, 2) — X (g, )|l = (1.3)
X ((re — DT+ 7 22) — X (0 — DT + 10, B)IS
Li(lte —ul) + La(lzy — 2 i)

so that the sequence of functions X() (v, z) is uniformly bounded and equicontinu-
ouson Gy . Consequently, according to Arzeld's theorem [1], 2 subsequence n, —>
- oo exists such that XU (1, x) converges uniformly on G; tosome function
¢ (¥, 2). The continuity of ¢ (T,Z) follows from the continuity of X0 (%, z)
and from (1.3) we get that ¢ (T, z) satisfies a Lipschitz condition in domain Gy .
Henceforth, ¢ (£, ) is called the limit function of X (£, ) and the set of all limit
functions is denoted N {@}.

We consider the system

(1. 1)

7 =@t 2y, Ty .. 0y) (=1, 2,...,n0) (L.4)

for which, as follows from the remarks above, the conditions for the existence and

855



856 A. S. Andreev

uniqueness of the solutions in G, are fulfilled.

Note 1. 1. By the construction of system (1,4) its solution is defined in the
finite time interval [0, 7], where the number 7T is specified by inequality (1. 2),i.e.,
by the properties of the original system (1, 1),

Lemma 1,1, Foranysolution & = X (¢, to, Zy), &> to, Z (to, to,
To) == Zy, Of system (1, 1) and for the bounded domain I' {|| z|| <C H}, forall t >
to there exists a sequence of segments 2 (t) =z ((n, — )T + ¢, to, xoj,
(ny — DT > to, 0 E<C T, of this solution, converging uniformly to a function
x* (t) which is a solution of system (1.4) with a preassigned limit function ¢ =
Po (£, 2), 9o = N {o}.

Proof, Bythe definition of ¢, there exists ny — +- oo such that X ((n, —
1) T 41, z)==X") (1, z) converges uniformly to ¢, (¢, z) on G;. We consider a
sequence of segments of the solution

e (i by, 2oy — 2 () =2 ((np — 1) T 41, 1, x0), 0< t < T

with number No, (No — 1) T > t. This sequence is uniformly bounded by virtue of
the boundedness of the solution being examined and is equicontinuous by virtue of the
boundedness of the derivative dz (¢, t, zo) / dt. Consequently, from the sequence
2" (t) we can select a subsequence z® (1) converging uniformly to some function
* (1), 0 <Lt < T. We have

(ny—1) T+t
(g — DT -t z) =2+ | X0, z(t, b, z))dv=
. i.
(ns—l) T+t
I((”’s_ 1) fI’vt()y"[l)) } X(T,I(T, thxO))dT =
(ns—l) T

t
2 (0) + S X ((rg— )T+ 7,2 ((ng— 1) T -7, o, 7)) dt =
0

t
2 O + | (X9 (¢, 29 (1) — @ (v, 2 (e)] v +
0

t ¢
§190(r, 2@ (1) — @a (v, 2* ()] dr + | qu (v, 2* (@) ar
0 0
Passing in this equality to the limit as n; -— 4 co and taking into account the uni-
form convergence of X% (¢, z) to @ (¢, z), as well as the uniform continuity of
%o (2, z), we obtain

¢
=%+ [Qolr, 2 (M)dr O<t<T)
o

The lemma has been proved.

The introduction of system (1.4) and Lemma 1, 1 enables us to  establish the
asymptotic stability and instability of the zero solution of system (1. 1) in the presence
of one Liapunov function with a sign-constant derivative,
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Definition 1,1, Theset M {x: W (z) = 0} does not contain in-
tegral solutions of system (1, 4) if the latter's solutions x = x (¢, &), defined on the
whole finite interval [0, T'] and such that z (f, Z) E M foran 0 <t 7T ,
do not exist,

2, Theorem 2, 1. Letsystem (1.1)be such that;

1) a positive-definite function V (2, 2), V1 (I zI) < V (t, o)< Vol z ),
admitting of an infinitesimal upper bound, exists in domain G , whose total derivat-
ive relative to (L. 1)is V' (¢, 2) << W (z) < 0;

2) a limit function @y & N {@} exists such that the set M {z : W (z) = 0}
does not contain integral solutions of systern (1.4) corresponding to this function besid-
es thesolution z (¢, 0) = 0, 0 < ¢t < T.

Then the zero solution of (1, 1) is asymptotically stable uniformly with respect to
initial coordinates from the domain

To{lzll << Hoy Ho<H, < H, V, (Hy) <V, (H,)}

Proof., From the theorem's hypothesis 1) follows the stability of z =0
uniformly with respect to fo  [2]. Indeed, for the solution = = x (£, fo, Zo), lo
>0, pe= Ty, of(1.1), by virtue of V" < 0 we have

“ x (t, to, $o) ” < Hl, vVt > to
limyse V (¢, z (¢, to, xo)) = V* = const > 0

Let us assume that V* 5= 0 for some such solution, We selectyy, 0 << << V!
(V*). Then for this solution

| z (£ to, zo) | > M, VE>1o (2.1)

Let @o (£, x) be a function satisfying the theorem's hypothesis 2), By Lemma 1,1
we construct a sequence of segments z(™ (t) =z ((n, —1)T -+ t, to, Zo) converg-
ing to the solution £ = x* (), 0<C ¢ < T of system (1,4) with function ¢ = Qo
(¢, ). By virtue of (2.1), z* (£) = 0 forall 0 < ¢<C T. For the sequence
2™ (t) we have the estimates

VnT, z(n.T, to, 2o)) =V ((n, — )T, z((n, — 1) T, t4, 7)) = (2.2)
n T n,T T
[ ova<— § we b apa<—{w@n@e)a<o
(n, =0T 0T b

Letting n, — - 0o, we obtain

T

0—V*—V*= — [W@*@)d<0
0

Hence it follows that W (z* (¢£)) = 0 forall 0 <C ¢ <{ T, which contradicts the

theorem's hypothesis 2), Thus, V* = (. Consequently, from the positive-definite-

ness of V (¢, z) follows the fulfilment of the relation }my_.,oe Z (¢, 2o, Zo) = 0

forall £ > 0 and zy & Io. Fromthe fo -uniform stability and compactness

of T, it follows [2] that the property mentioned is fulfilled uniformly with respect
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to Zo & I'y. This follows as well from the conditions V¥ = 0 [3].

Theorem 2.2, Letsystem (1.1) be such that;

1) afunction V (¢, z), | V (¢, ) | < V, (Il x]]), admitting of an infinitesimal
upper bound and having positive values in any small neighborhood of z = 0 , exists
in domain G, whose total derivative relative to (L. 1)is V' (¢, ) > W (z) > 0;

2) a limit function @ = @ (¢, ) & N {¢)} exists such that the set M {z : W
() = 0} does not contain integral solutions of system (1, 4) corresponding to this
functions besides the solution x = z (¢, 0), 0 < ¢t < T.

Then the zero solution is unstable,

Proof, For t, > 0 and for any small § > 0 we choose x, || z, || <C 9,
such that V (¢, ) = Vo> 0. We assume that the solution z = Z(f, %o, o)
is bounded: || z (¢, to, xo) || << Hy << H forall t> tp. Then limy.1o V (¢,
(¢, to, Z)) == V*  exists by virtue of the boundedness of V. From V' >0
we have

” (.’K (tv tO’ .’L”o) “ > LE Vt > to (2.3)

where M is such that Vy (n) << V,. Let ¢ = ¢ (!, z) be a function satisfying
the theorem's hypothesis 2), By Lemma 1.1, we can construct a sequence of segments
z(M (t) of the solution being examined, converging to the solutionz = z* (¢), 0 <
t < T, of system (1.4) with function ¢ = @ (¢, ). By virtue of (2.3), z* (¢)
7 0 forall 0 < ¢<( 7. Analogously to(2,2) we have the relations

vV (an7 x(anv t07 ‘ZO)) —V ((nr - 1)T1 x((nr - 1)T1 tOv xo)) >
T

\W (@ (t)dt >0
0
Letting n, — - oo, we obtain the equality

T
0=V*—v*— [W*@)dt>0 (2.4)
9

or W (z* (¢)) = 0, which contradicts the theorem's hypothesis 2).

Note 2. 1. Inthe hypotheses of the theorems with sign-constant derivative
in [4,5] we can indicate a finite number T > 0, such that the set Miz: Vix)= 0}
does not contain the solutions

z (ty 10)1 x (01 $0) = Iy, T9 E {1‘: 0 <"] < ux" < Hl)

on the whole interval [0, 7]. Hence, taking into account that system (1. 4) coincid-
es with (1,1) when the latter is autonomous and that the number 7 in Theorems2,1
and 2,2 can be arbitrary, we can show that the methods used to prove Theorems2, 1
and 2.2 are applicable to the proofs of the theorems in [4, 5].

Starting from this note, we can say that Theorems 2.1 and 2.2 are generaliza-
tions of the asymptotic stability and instability theorems with sign-constant derivative
in {4,5).
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Note 2.2, Theexample in[6], showing the impossibility of a direct general-
ization of the theorems in [4,5], does not satisfy the hypotheses of Theorem 2, 1.

Example 2, 1. Letus consider the second-order system of differential equa-
tions

z" = g (2 + £ (022 23 = — Z1a {8} 21 + gaa (t) 2 (2.5)

We assume that the coefficients g;;(¢) are bounded and satisfy the Lipschitz condition
lgij(t) — gij () S Li(lta — 1), £1a(t) = 0 on an infinite system of intervals [z,
tal, tok — tixg > T >0, fyy — -+ 0 as np — + 00, T = const. Then with system
(2.5) we can associate the system
zy' =g () 21+ g12* () 73, 7' = — gna* () @1+ 80* (1) 7, (2.6)

whose coefficients g;;*(?) are the limits of  g;;() , and £* ()0 forall 0 <
1< T.

For the derivative of the function V == z,% | z,? relative to (2,5) we have
V' — ha? if gy()) < — b= const < 0 and gy, (1) < 0 (case 1) or V' > hz?
if gu()>h=const >0 and gy (t) >0 (case2). Butby virtue of the condi-
tion g3* (1) =0 theset M {W (z) = -t k2,2 = 0 : z; = 0} does not contain solutions
of system (2, 6) besides z, = z, = 0. Consequently, from Theorems 2.1 and 2,2
we get that the zero solution of (2. 5) is asymptotically stable in case 1) and unstable
in case 2), which are weaker than the conditions required in the well-known example
of Chetaev [7],

3. Letus consider the question of the asymptotic stability and instability of the
zero solution of (1, 1) with respect to a part of the variables xy, 23, . . ., 2y (m <
n}. For this we denote

vi=x; (=1,2,...,m), z;=xm; (=412,...,p,
p=n—m)

Hyll = @® + A e ym, Azl = (z,* + 2. + .. -’f‘ng)%

Theorem 3, 1, Letsystem (1,1) be such that:

1) its solution = = z (¢, ty, Zo), 2020, || Zo || < H)y, is uniformly L-bounded
in z, i.e,, for these solutions || z (¢, Zo, Zo) || <C L forall ¢> ¢, for which
Ny (2 to, z) | <A, A2 + L2 < H?, Hy, < H, < H;

2) a y -positive-definite function V (¢, =), V (¢, 2) > V, (| y|}), exists in
domain G, suchthat V (¢, z2) < Vo (2) and V' (¢, 2) << —W (2); V, (2),
and W (z) are some sign-constant functions;

3) a limit function @ = @ (¢, ) & N {@} exists such that the set M {z:
W (z) = 0} [} K {z: V, (x) > 0} does not contain integral solutions of system(1,4)
corresponding to this function.

Then the zero solution of (1.1) is ¥ -asymptotically stable uniformly with respect
to z, from the domain Ty {llz || < Hy < Hyosup(Vy(z) for z & T,) <V,
A4)}.

( )}P roof. From the theorem's hypotheses 1) and 2) follows the Y -stability of
the zero solution of (1, 1), uniform with respect to ¢y [8]. For any solution
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z =z (¢ by, Zo). tg >0, 2y & Ty, by virtue of V' <0 wehave ||y (¢, ¢,
Z) || <A forall t>¢ and limg.yo V (2, 2 (2, to, zp)) = V* > 0.
Thus the solution of (1,1) from T, is bounded by the domain Ty {ll ¥l <C 4,
Wzl <L}

Let us assume that V* o£ ( for some solution = = z (¢, ¢, z,), zy = T,.
Then for ali ¢ > %o wehave V (¢, x (¢, ty, Zp)) > V*, and, hence,V, (z (¢, t,,
zo)) > V* > 0. Consequently,

z(t by, zo) EK{fz €T Vo(@) >V, Vit (3.1

Let @9 (¢, z) be a function satisfying the theorem's hypothesis 3), By Lemma 1, 1
we construct a sequence of segments z() — z ((n, — 1) T -+ %, to, o) con-
verging to the solutions z = z* (t), 0 <t <{ T of system (1, 4) with function

@ = Qo (f, ¥). By virtue of (3. 1) we have z* ({) = K, forau 0 <t < T.
As in Theorem 2,1, from estimates (2,2) we obtain the relation W (z* (t)) = 0
forall O <t < 7, which contradicts the theorem's hypothesis 3).

Thus, for any solution z = z (t, ty, Z,), to > 0, o & I'y we have V¥ =0
and, consequently, lim;., . y (2, o, Zo) = 0. According to [3], from the rela-
tion lim.io V (¢, z (¢, 2o, z,) = 0 it follows as well that the asymptotic y -
stability found is uniform with respect to z, & I'.

The nature of the instability of the zero solution of (1. 1) can be established by
the following theorem.,

Theorem 3, 2, Letsystem (1,1) be such that;

1) its solutions = = x (¢, £y, Zo), to > 0, || 2o |l << Hy , is uniformly L.
bounded in 2, i,e,, for these solutions || z (¢, ¢y, Zo) || C L forall & >t
such that ||y (¢, o, ) || <A, H? < A* + L* = H? < H?

2) abounded function V (¢,2), | V (t, ) | < V(|| z|l), exists in domain

G, taking positive values in any small neighborhood of z = 0 whose total
derivative relative to (1. 1)is V" (¢, ) > W (2) > 0;

3) alimit function @ = @ (£, z) & N{@} exists such that the set M {z :
Wi(z) =0} ) K {x:V,(x) >0} doesnot contain integral solutions of system
(1.4) corresponding to this function,

Then the zero solution of (1.1) is y-unstable,

Proof, For Z >0 andanysmall § >0 wechoose &, || 2]l <8,
such that V (¢,, z,) = V, > 0. We assume that the solution Z = z (¢, ¢,, z,)
is bounded in y, i,e.,

” Yy (t’ tO,' xo) “ < A, A? + LS = H121 Vt > to

Then by virtue of hypothesis 2), lim.re V (¢, Z (2, 15, 2,)) = V* exists and
also

Vyl(x, (8, tg, o)) > Vo >0, Vit (3.2)

By Lemma 1.1 we construct a sequence of segments of the solution being examined,
converging to the solution & = * (2), 0 <t < 7, of system (1.4) with function
¢ = @, (¢, ). By virtue of (3,2), V, (z* (£)} > Vo > 0} from a relation of
form (2.4), as in Theorem 2.2, W (z* (¢)) = 0 forall 0 <t < 7. This
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contradicts the theorem's hypothesis 3).

Making a note analogous to Note 2, 1, we can assert that Theorems 3,1 and 3,2
generalize to system (1. 1) the results in [3, 9, 10] on asymptotic stability and instabil-
ity with respect to a part of the variables with a sign-constant derivative,

4. Letus consider a mechanical system with variable masses and with time-inde-
pendent holonomic constraints, whose motion is described by the equations {11]
7l n
d* ¢ oT o*T a*11 . .
(o) =% = — g 0+ Yo — Y e D)
=1

it \dq;
j=1
i n
T = —-"'_Z ai; (¢, m, q)4:'q;"
i,j=1

Here T is the kinetic energy, o*Il / dq; are generalized forces, viz., potential
forces for the masses fastened, g;; (¢, ¢y, 9o, - - -, @n) = —gii (& G1y Doy - -

-»qn) are the coefficients of the gyroscopic forces, f;; (¢, ¢) = f; (t, q) are
the coefficients of the dissipative forces 1; (¢, ¢, ¢') are the generalized reactive
forces caused by the joining and separating of particles to and from the system's mater~
ial points and by the motion within these points, d* / dt and 0* / 8q; are deriva-
tives under hardening masses. It is assumed that the masses of the points are bounded
and do not vanish, i,e,,

0 <mpy <mx(t, q) << Mag, My, Mpy = comnst (4.2)
r=1,2,...,N)
Inaddiion 0*II/dg, =...=0*1/d¢, =0 for g =¢ = ... =
gqn =0 forall ¢>>0 and for any values of 7y, ..., my satisfying inequalit-
ies (4.2 Yp=Pp=...=P, =0 for g =¢g ' =... =g, =0,

forall ¢ >0 and g¢; all the quantities occurring in Eqs. (4. 1) satisfy conditions
(1.2).
Then system (4, 1) admits of the zero solution

Q1'292'=---¥Qn'=0:9'1:9'2:'--:%:0 (4.3)

and with it we can associate the system of differential equations (Lemma 1, 1)

N n n
. o e = i L
Zaif% + Z Tixdi Ik — 5 2 jkiqi I = (4.4)
=1 i k=1 k=1
n
I+ }:‘gijoqj" - Z/ijo(b'. + P°
J=1

in which a;5°, a;5°, 11,°, g:5°, fi,°, ¥;° are the limits of the corresponding quantit-
ies from (4.1). By virtue of (4.2), det] a;;°]] > o = const > 0.

Using the theorems proved, we find the conditions for the asymptotic stability and
instability of solution (4. 3) of system (4. 1), Let us assume that system (4, 1) satisfies
the following constraints; the joining and separating of the particles and their motion
within the material points are such that



862 A, S, Andreev

N N
1 .
E,Buvu-i--g— Elmu”u2<0 (4.5)
p=1 u=1

where R, is a reactive force applied to the M -th material point (in the absence of
intemal motion of the particles [11] this condition reduces to

Zmu Uy — vu) w0

where ¥y, and wu, are the figurative and the absolute velocities of the particles
joining to and separating from the system's material points); the function Il (¢, m, g)
does not increase with increase in time and with the change in the masses of the
system's points under this increase, i.e.,

+Z om . (4. 6)

the dissipative forces acting on the system are forces of total dissipation, and f isa
positive-definite quadratic form in ¢;°, 3"y - - . » @ si. €.,

f= -5 sz%q? >folgr 92’ --.,¢2) >0 (4.7)

i,j=1

fO"O\:}ql ‘ng... ——qn.:O

Theorem 4., 1. Together with conditions (4.5) — (4.7) we assume as well
that;
1) function II (¢, m, q) is positive-definite and admits of an infinitesimal
upper bound with respect to ¢y, ¢s, - - .,qn;
2) (4.3) is a nondegenerate isolated equilibrium position, i.e., the condition
n a*n 9
Z(a—qi—) >1lo(qu g2 ) >0, =0 g1=gs=...=¢p=0(4.8)
=1
is fulfilled,
Then the zero equilibrium position of (4,1) is asymptotically stable uniformly with
respect to (g, 9o)-

Proof, From the theorem's hypotheses the function H = T + 1 is positive-

definite and admits of an infinitesimal upper bound with respect to g1yqgz s -« o dn s
g1y Q25 - - -y n, with total derivative

H < -2 < -2/ <0
where f, = 0 ifandonlyif ¢," =¢," = ... =g, = 0. Forsystem(4.4)
we find that its solution lying on the set ¢;" = ¢," = . .. = g = 0 must satisfy
the equalities I1,° = If,"’ = ... = I1,° = 0, which, by virtue of (4.8), is
possible only for the solution gy’ =@’ = . . . =g’ = @1 = ... =qn = 0.

Hence from Theorem 2,1 it follows that solution (4, 3) is asymptotically stable
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uniformly with respect to  (g,’, g,).

Theorem 4.2, Together with conditions (4, 5) — (4.7) we assume as well
that function Il = Il (¢, m, q) is positive-definite in ¢y, . . .,gm and is bound-
ed by a continuous function Py (g3, Gay - - -,gn), I (2, m, @) < Py (g); the
motions (4. 1) from some neighborhood of (4. 3) are uniformly bounded with respect
to Gmi1s - - -4Gn; there are no equilibrium positions of (4, 1) on the set Py (g5, qq,

..y Gn) > 0, and this property is nondegenerate, i.e.,

i ( «;;n )2 >o(q1, g2 - - - 0n) (4.9)

=1

where II; (gy, g2, - - -, @n) >0 onset Py(gy, 93, . - - gn) > 0. Then the
zero equilibrium position of system (4, 1) is asymptotically stable with respect to
g1’y 95’y -« vln’y q1s - - -,dm uniformly with respect to (g,", go)-

Proof, From the theorem's hypotheses the function J = T -+ II is positive-
definite in gl.: 42.9 MRS | ‘In.: Q1 -+ s Gms H < TO + POs Tﬁ isa positive-
definite quadratic formin ¢, ¢, ..., ¢n. We also have

H <=2 M{g, q:/,=0} N KA{qd, q:To+Po>_0}x
(@,0: Py @y 0ar - - 2 8) >0,07 =¢ =...=¢y =0}
By virtue of (4.9),

% (H‘IO)2 >1l (ql? G2y -0y Qn)>0

onset Py (qy, Goy + » -» gn) >0 , Consequently, set M [ K does not contain
solutions of system (4.4), Hence, on the basis of Theorem 3, 1, we obtain the proof
required,

Theorem 4,3, Together with conditions (4.5) — (4.7) we assume as well
that I1 == II (£, m, ¢) admits of an infinitesimal upper bound with respect to gy,
oy - - -« Qn; in any sufficiently small neighborhood of (4,3) the function Il takes
negative values; equilibrium position (4. 3) is nondegenerate and isolated, i.e., rela-
tion (4.8) holds. Then this equilibrium position is unstable,

Example 4. 1. We consider a heavy rigid body of variable composition,
rotating around a fixed point 0O, whose center of mass can be displaced along the
axis Oz of some coordinate system Ozyz fixed in the body; the moments of the
reactive forces, of the inertial forces and of the Coriolis forces of the moving particles
equal zero, The position is defined by the Euler angles 6, ¢, ¥, formed by Oxyz
with a fixed system OFnl; axis Of is directed vertically upward; 7 = I (1, 8, ¢, V)
is the body's inertia tensor in the axes Oxyz, dI / dt is a non-positive matrix, Besides
the force of gravity with potential function I, = mgzesin 6, sing let the following
forces act on the body; dissipative forces with total dissipation and potential forces
with potential function
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I]1 = Hl (ty 91 ‘P, ’lp)v al—Il / at < O
o _ oy 0y _ g hen §=_% _3n =0
% o o when 8=—2, ¢=—>. ¥

so that the equations of motion admit of the equilibrium pasition (the body's axis ¢z
is directed downward)

e':¢':¢‘:0,6:—;,¢=%’¢=0 (4. 10)

¥ II, ispositive-definite, admits of an infinitesimal upper bound with respect to
0 —n/2, ¢ —31/2,% and

oMy\2 4 (O 2 L (0T B g1 (8 @y ) >0
(7)_) +(T +(6\b) = o (0 @5 ) >
nl.,=0<=>e=_’;_, cp=‘°i2’l, Pp=20
mg zg > q = const > 0, (mgzy) < 0 (4. 11)

then equilibrium position (4. 10) is asymptotically stable uniformly with respect to

8, 9o, Wo'» 9, Po, Yo- If II, = const , then under conditions (4, 11) position
(4. 10) is asymptotically stable with respect to 0°, ¢°, ¥", 0, . When II; = const
there also is the equilibrium position (the body's axis Oz 1is directed upward)

. . . 3n
—¢ =9 =00="1 ¢=9" =0
0=¢ =¥ =0, 5 P=5 ¥
Under the action of dissipative forces with total dissipation and under the conditions
0 << q; <X (mgzg) < g2 (g1, ga == const) and (mgze) > 0 this equilibrium position
is unstable,
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